Genetic Inactivation of Pyruvate Dehydrogenase Kinases Improves Hepatic Insulin Resistance Induced Diabetes

نویسندگان

  • Rongya Tao
  • Xiwen Xiong
  • Robert A. Harris
  • Morris F. White
  • Xiaocheng C. Dong
چکیده

Pyruvate dehydrogenase kinases (PDK1-4) play a critical role in the inhibition of the mitochondrial pyruvate dehydrogenase complex especially when blood glucose levels are low and pyruvate can be conserved for gluconeogenesis. Under diabetic conditions, the Pdk genes, particularly Pdk4, are often induced, and the elevation of the Pdk4 gene expression has been implicated in the increased gluconeogenesis in the liver and the decreased glucose utilization in the peripheral tissues. However, there is no direct evidence yet to show to what extent that the dysregulation of hepatic Pdk genes attributes to hyperglycemia and insulin resistance in vivo. To address this question, we crossed Pdk2 or Pdk4 null mice with a diabetic model that is deficient in hepatic insulin receptor substrates 1 and 2 (Irs1/2). Metabolic analyses reveal that deletion of the Pdk4 gene had better improvement in hyperglycemia and glucose tolerance than knockout of the Pdk2 gene whereas the Pdk2 gene deletion showed better insulin tolerance as compared to the Pdk4 gene inactivation on the Irs1/2 knockout genetic background. To examine the specific hepatic effects of Pdks on diabetes, we also knocked down the Pdk2 or Pdk4 gene using specific shRNAs. The data also indicate that the Pdk4 gene knockdown led to better glucose tolerance than the Pdk2 gene knockdown. In conclusion, our data suggest that hepatic Pdk4 may be critically involved in the pathogenesis of diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dipeptidyl Peptidase-4 Inhibition Ameliorates Western Diet–Induced Hepatic Steatosis and Insulin Resistance Through Hepatic Lipid Remodeling and Modulation of Hepatic Mitochondrial Function

Novel therapies are needed for treating the increasing prevalence of hepatic steatosis in Western populations. In this regard, dipeptidyl peptidase-4 (DPP-4) inhibitors have recently been reported to attenuate the development of hepatic steatosis, but the potential mechanisms remain poorly defined. In the current study, 4-week-old C57Bl/6 mice were fed a high-fat/high-fructose Western diet (WD)...

متن کامل

Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin.

Pyruvate dehydrogenase kinase (PDK) catalyzes phosphorylation and inactivation of the pyruvate dehydrogenase complex (PDC). Two isoforms of this mitochondrial kinase (PDK2 and PDK4) are induced in a tissue-specific manner in response to starvation and diabetes. Inactivation of PDC by increased PDK activity promotes gluconeogenesis by conserving three-carbon substrates. This helps maintain gluco...

متن کامل

Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats.

Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes between 3 and 6 mo of age that is associated with insulin resistance. Alterations in hepatic glucose metabolism are known to contribute to the hyperglycemia of diabetes; however, the mechanisms underlying this ...

متن کامل

Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice

Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body gluco...

متن کامل

Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors.

Starvation and diabetes increase pyruvate dehydrogenase kinase-4 (PDK4) expression, which conserves gluconeogenic substrates by inactivating the pyruvate dehydrogenase complex. Mechanisms that regulate PDK4 gene expression, previously established to be increased by glucocorticoids and decreased by insulin, were studied. Treatment of HepG2 cells with dexamethasone increases the relative abundanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013